伴随着大数据技术在IT领域的持续发展与成熟,大数据逐步渗透到各行各业。在安防领域,大数据具有广阔的应用场景,带来深度的价值。经过初步摸索,安防大数据也面临一些技术难点。对于这些问题,我们分析安防行业特有的场景特点,探讨一些贴切的解决方案,使得大数据技术更好地为安防业服务。
大数据当前在各行业的应用
大数据技术发端于IT领域,当前在互联网、电子商务中应用得最为成熟。Google公司根据用户海量的搜索日志,成功预测病情在北美的蔓延情况;通过分析处理大量的语料库,为用户提供精准的在线翻译。亚马逊根据用户过往的购买行为,分析出特定用户群的购买“口味”,从而在自己的网站中提供精准的广告推荐。而国内的淘宝网,通过分析网民浏览商品的日志,给买家提供到特定商品的关联匹配。
在其他行业,大数据的使用也屡见不鲜:
在卫生行业,基于全民的电子档案与电子病历库正在构建。通过全民电子病历库,我们能分析全民的健康状况,监控相关疾病的蔓延走势,为做好卫生防范措施提供参考。
在电力行业,通过分析大区域的用电记录,能够优化电力企业管理模式,提升企业经营水平,为基建决策提供有力参考,提高智能控制水平,加强电力的协同管理。同样对于整个国家,通过分析用电情况,在宏观掌握国家的经济状况,为制定经济政策提供参考。
在物流行业,通过分析大量以往的配送记录,在宏观上掌握大类物品的流向,提前把物品运送到特定区域,提高送货效率。在国外,一家大型的超市,通过分析交通与商品大体流向,能在精确的时间范围内,把特定类商品送到特定的门店,减少库存时间,提高周转率,创造企业利润。
同样,在安防领域,大数据也得到广泛使用。
大数据助力安防行业
经过一段时间的摸索,大数据助力安防行业的发展取得相当的成效,部分企业如海康威视等已经有了较多的成熟项目案例。
在智慧交通方面,海康威视借助大数据技术,交通管理系统能够在恶劣的网络环境,对城区交通要道进行拍摄与录制,同时把图片与视频数据输往后端的大数据处理平台。通过后端大数据处理,识别繁忙的路段,提前做好交通分流措施。借助车牌识别技术,综合各卡口的过车记录,能够分析特定车辆的运行轨迹。同样,通过对大量行车违法记录的模式识别,能在特定路段对具有违规倾向的车辆进行报警,比如在高架桥,高速公路上。通过对城市周边主要卡口大量的行车记录分析,能识别出异常的进出城的记录,做好防范措施。
在公安执法方面,海康威视通过人脸识别技术,提高对犯罪嫌疑人追查的效率。通过对大量异常行为的模式特征提取,能提前判别违法行为,比如在火车站,通过对扒手外观打扮,行为举止,作案时的动作特征分析,能够提前把嫌疑信息告知车站治安人员,提高执法的效率。